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Abstract

The paper is concerned with learning to rank,
which is to construct a model or a function for
ranking objects. Learning to rank is useful for
document retrieval, collaborative filtering, and
many other applications. Several methods for
learning to rank have been proposed, which take
object pairs as ‘instances’ in learning. We refer to
them as the pairwise approach in this paper. Al-
though the pairwise approach offers advantages,
it ignores the fact that ranking is a prediction task
on list of objects. The paper postulates that learn-
ing to rank should adopt the listwise approach
in which lists of objects are used as ‘instances’
in learning. The paper proposes a new proba-
bilistic method for the approach. Specifically it
introduces two probability models, respectively
referred to as permutation probability and topk
probability, to define a listwise loss function for
learning. Neural Network and Gradient Descent
are then employed as model and algorithm in the
learning method. Experimental results on infor-
mation retrieval show that the proposed listwise
approach performs better than the pairwise ap-
proach.

Appearing inProceedings of the 24th International Conference on
Machine Learning, Corvallis, OR, 2007. Copyright 2007 by the
author(s)/owner(s).
*This work was done when the first, second and fourth authors
were visiting Microsoft Research Asia.

1. Introduction

The central issues of many applications are ranking. These
include document retrieval, collaborative filtering, expert
finding, anti web spam, sentiment analysis, and product rat-
ing. In this paper, we address learning to rank and without
loss of generality we take document retrieval as example.

Learning to rank, when applied to document retrieval, is a
task as follows. Assume that there is a collection of docu-
ments. In retrieval (i.e., ranking), given a query, the ranking
function assigns a score to each document, and ranks the
documents in descending order of the scores. The ranking
order represents the relevance of documents with respect to
the query. In learning, a number of queries are provided;
each query is associated with a perfect ranking list of docu-
ments; a ranking function is then created using the training
data, such that the model can precisely predict the ranking
lists in the training data.

Due to its importance, learning to rank has been draw-
ing broad attention in the machine learning community re-
cently. Several methods based on what we call the pairwise
approach have been developed and successfully applied to
document retrieval. This approach takes document pairs as
instances in learning, and formalizes the problem of learn-
ing to rank as that of classification. Specifically, in learning
it collects document pairs from the ranking lists, and for
each document pair it assigns a label representing the rela-
tive relevance of the two documents. It then trains a classi-
fication model with the labeled data and makes use of the
classification model in ranking. The uses of Support Vec-
tor Machines (SVM), Boosting, and Neural Network as the
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classification model lead to the methods of Ranking SVM
(Herbrich et al., 1999), RankBoost (Freund et al., 1998),
and RankNet (Burges et al., 2005).

There are advantages with taking the pairwise approach.
First, existing methodologies on classification can be di-
rectly applied. Second, the training instances of doc-
ument pairs can be easily obtained in certain scenarios
(Joachims, 2002). However, there are also problems with
the approach. First, the objective of learning is formalized
as minimizing errors in classification of document pairs,
rather than minimizing errors in ranking of documents.
Second, the assumption of that the document pairs are gen-
erated i.i.d. is also too strong. Third, the number of gen-
erated document pairs varies largely from query to query,
which will result in training a model biased toward queries
with more document pairs (Cao et al., 2006)

In this paper, we propose employing what we call the list-
wise approach, in which document lists instead of docu-
ment pairs are used as instances in learning. The major
question then is how to define a listwise loss function, rep-
resenting the difference between the ranking list output by
a ranking model and the ranking list given as ground truth.

We propose a probabilistic method to calculate the listwise
loss function. Specifically we transform both the scores
of the documents assigned by a ranking function and the
explicit or implicit judgments of the documents given by
humans into probability distributions. We can then utilize
any metric between the probability distributions as the loss
function. We consider the uses of two models for the trans-
formation; one is referred to as permutation probability and
the other topk probability.

We then propose a learning to rank method using the list-
wise loss function, with Neural Network as model and Gra-
dient Descent as algorithm. We refer to it as ListNet.

We applied ListNet to document retrieval and compared the
results of it with those of existing pairwise methods includ-
ing Ranking SVM, RankBoost, and RankNet. The results
on three data sets show that our method outperforms the
existing methods, suggesting that it is better to employ the
listwise approach than the pairwise approach in learning to
rank.

The major contributions of this paper include (1) proposal
of the listwise approach, (2) formulation of the listwise loss
function on the basis of probability models, (3) develop-
ment of the ListNet method, (4) empirical verification of
the effectiveness of the approach.

The rest of the paper is organized as follows. Section 2 in-
troduces related work. Section 3 gives a general description
on the listwise approach to learning to rank. Probability
models for defining a listwise loss function are introduced

in Section 4 and the learning method ListNet is explained
in Section 5. Section 6 reports our experimental results.
Finally, Section 7 makes conclusions.

2. Related Work

2.1. Learning to Rank

Learning to rank is a new and popular topic in machine
learning. There is one major approach to learning to rank,
referred to as the pairwise approach in this paper. For
other approaches, see (Shashua & Levin, 2002; Crammer
& Singer, 2001; Lebanon & Lafferty, 2002), for example.

In the pairwise approach, the learning task is formalized as
classification of object pairs into two categories (correctly
ranked and incorrectly ranked). Herbrich et al. (1999) pro-
posed employing the approach and using the SVM tech-
niques to build the classification model. The method is re-
ferred to as Ranking SVM. Freund et al. (1998) proposed
performing the task in the same way but by means of Boost-
ing. Burges et al. (2005) also adopted the approach and de-
veloped a method called RankNet. They employed Cross
Entropy as loss function and Gradient Descent as algorithm
to train a Neural Network model.

Learning to rank, particularly the pairwise approach, has
been successively applied to information retrieval. For in-
stance, Joachims (2002) applied Ranking SVM to docu-
ment retrieval. He developed a method of deriving doc-
ument pairs for training, from users’ clicks-through data.
Burges et al. (2005) applied RankNet to large scale web
search. Cao et al. (2006) adapted Ranking SVM to doc-
ument retrieval by modifying the loss function. See also
(Qin et al., 2007; Tsai et al., 2007).

2.2. Probability Models on Ranking

In statistics, probability models for representing ranking
lists of objects and methods for estimation of the models
have been proposed. For example, following the work by
Luce (1959), Plackett (1975) defined probability models
on ranking lists of objects. He further proposed a method
for estimating the models. In this paper, we make use of
similar probability distributions. However, the underly-
ing structures (i.e., parameters) and the fundamental usages
(i.e., transformation of scores to probability distributions)
of our models differ from those of Plackett’s.

3. Listwise Approach

In this section, we give a general description on learning to
rank, with document retrieval as example. Particularly we
describe in details the listwise approach. In this paper, we
use superscript to denote the id of a query and subscript to
denote the id of a document.
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In training, a set of queriesQ = {q(1),q(2), · · · ,q(m)} is
given. Each queryq(i) is associated with a list of docu-
mentsd(i) =

(

d(i)
1 ,d

(i)
2 , · · · ,d

(i)
n(i)

)

, whered(i)
j denotes thej-th

document andn(i) denotes the sizes ofd(i). Furthermore,
each list of documentsd(i) is associated with a list of judg-
ments (scores)y(i) =

(

y(i)
1 , y

(i)
2 , · · · , y

(i)
n(i)

)

wherey(i)
j denotes

the judgment on documentd(i)
j with respect to queryq(i).

The judgmenty(i)
j represents the relevance degree ofd(i)

j to

q(i), and can be a score explicitly or implicitly given by hu-
mans. For example,y(i)

j can be the number of clicks ond(i)
j

whend(i)
j is retrieved and returned for queryq(i) at a search

engine (Joachims, 2002). The assumption is that the higher
click-on rate is observed ford(i)

j andq(i) the stronger rele-
vance exists between them.

A feature vector x(i)
j = Ψ(q(i),d(i)

j ) is created from

each query-document pair (q(i),d(i)
j ), i = 1,2, · · · ,m; j =

1,2, · · · ,n(i). Each list of featuresx(i) =
(

x(i)
1 , · · · , x

(i)
n(i)

)

and the corresponding list of scoresy(i) =
(

y(i)
1 , · · · , y

(i)
n(i)

)

then form an ‘instance’. The training set can be denoted as
T =

{

(x(i), y(i))
}m

i=1
.

We then create a ranking functionf ; for each feature vec-
tor x(i)

j (corresponding to documentd(i)
j ), it outputs a score

f (x(i)
j ). For the list of feature vectorsx(i) we obtain a list of

scoresz(i) =
(

f (x(i)
1 ), · · · , f (x(i)

n(i) )
)

. The objective of learn-
ing is formalized as minimization of the total losses with
respect to the training data.

m
∑

i=1

L(y(i), z(i)) (1)

whereL is a listwise loss function.

In ranking, when a new queryq(i′) and its associated docu-
mentsd(i′) are given, we construct feature vectorsx(i′) from
them and use the trained ranking function to assign scores
to the documentsd(i′). Finally we rank the documentsd(i′)

in descending order of the scores. We call the learning
problem described above as the listwise approach to learn-
ing to rank.

By contrast, in the pairwise approach, a new training data
setT ′ is created fromT , in which each feature vector pair
x(i)

j and x(i)
k forms a new instance wherej , k, and+1 is

assigned to the pair ify(i)
j is larger thany(i)

k otherwise−1.
It turns out that the training dataT ′ is a data set of bi-
nary classification. A classification model like SVM can
be created. As explained in Section 1, although the pair-
wise approach has advantages, it also suffers from draw-
backs. The listwise approach can naturally deal with the
problems, which will be made clearer in Section 6.

4. Probability Models

We propose using two probability models to calculate the
listwise loss function in Eq. (1). Specifically, we map a list
of scores to a probability distribution using one of the two
probability models and then take any metric between prob-
ability distributions as a loss function . The two models are
referred to as permutation probability and topk probability.

4.1. Permutation Probability

Suppose that the set of objects to be ranked are identified
with the numbers 1,2, ...,n . A permutationπ on the objects
is defined as a bijection from{1,2, ...,n} to itself. We write
the permutation asπ = 〈π(1), π(2), ..., π(n)〉. Here,π( j) de-
notes the object at positionj in the permutation. The set of
all possible permutations ofn objects is denoted asΩn.

Suppose that there is a ranking function which assigns
scores to then objects. We uses to denote the list of scores
s = (s1, s2, ..., sn), wheresj is the score of thej-th object.
Hereafter we sometimes make interchangeable the ranking
function and the list of scores given by the ranking func-
tion.

We assume that there is uncertainty in the prediction of
ranking lists (permutations) using the ranking function. In
other words, any permutation is assumed to be possible, but
different permutations may have different likelihood values
calculated based on the ranking function. We define the
permutation probability, so that it has desirable properties
for representing the likelihood of a permutation (ranking
list), given the ranking function.

Definition 1 Suppose thatπ is a permutation on n ob-
jects, andφ(.) is an increasing and strictly positive func-
tion. Then, the probability of permutationπ given the list
of scores s is defined as

Ps(π) =
n
∏

j=1

φ(sπ( j))
∑n

k= j φ(sπ(k))

where sπ( j) denotes the score of object at position j of per-
mutationπ.

Let us consider an example with three objects{1,2,3} hav-
ing scoress = (s1, s2, s3). The probabilities of permuta-
tionsπ = 〈1,2,3〉 andπ′ = 〈3,2,1〉 are calculated as fol-
lows:

Ps(π) =
φ(s1)

φ(s1) + φ(s2) + φ(s3)
·

φ(s2)
φ(s2) + φ(s3)

·
φ(s3)
φ(s3)

.

Ps(π
′) =

φ(s3)
φ(s1) + φ(s2) + φ(s3)

·
φ(s2)

φ(s2) + φ(s1)
·
φ(s1)
φ(s1)

.

Lemma 2 The permutation probabilities Ps(π), π ∈ Ωn

form a probability distribution over the set of permuta-
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tions, i.e., for eachπ ∈ Ωn, we have Ps(π) > 0, and
∑

π∈Ωn

Ps(π) = 1.

Theorem 3 Given any two permutationsπ andπ′ ∈ Ωn, if
(1) π(p) = π′(q), π(q) = π′(p), p < q; (2) π(r) = π′(r), r ,
p,q; (3) sπ(p) > sπ(q), then Ps(π) > Ps(π′).

Theorem 4 For the n objects, if s1 > s2 > ... > sn, then
Ps(〈1,2, ...,n〉) is the highest permutation probability and
Ps(〈n,n − 1, ...,1〉) is the lowest permutation probability
among the permutation probabilities of the n objects.

It is easy to verify that Theorem 4 holds. Proofs for Lemma
2 and Theorem 3 can be found in our technical report (Cao
et al., 2007). Theorem 3 indicates that, for a permutation
in which an object with a larger score is ranked ahead of
another object with a smaller score, if we exchange their
positions, the permutation probability of the resulting per-
mutation will be lower than that of the original permuta-
tion. Theorem 4 indicates given the scores ofn objects, the
list of objects sorted in descending order of the scores has
the highest permutation probability, while the list of ob-
jects sorted in ascending order has the lowest permutation
probability.

Theorem 5 (1) For linear functionφ(x) = αx, α > 0, the
permutation probability is scale invariant:

Ps(π) =
n
∏

j=1

φ(sπ( j))
∑n

k= j φ(sπ(k))
= Pλs(π) =

n
∏

j=1

φ(λsπ( j))
∑n

k= j φ(λsπ(k))
,

∀λ > 0. Hereλs means each component of score list s is
multiplied by a positive constantλ.

(2) For exponential functionφ(x) = exp(x), the permuta-
tion probability is translation invariant:

Ps(π) =
n
∏

j=1

φ(sπ( j))
∑n

k= j φ(sπ(k))
= Pλ+s(π) =

n
∏

j=1

φ(λ + sπ( j))
∑n

k= j φ(λ + sπ(k))

∀λ ∈ R. Hereλ + s means adding a constantλ to each
component of score list s.

Given two lists of scores, we can first calculate the two cor-
responding permutation probability distributions, and then
take the metric between the two distributions as the list-
wise loss function. Since the number of permutations is of
order O(n!), the calculation might be intractable in prac-
tice. To cope with the problem, we consider the use of top
k probability. (We note that although the calculation of per-
mutation probabilities is intractable, the notion itself is still
valuable for the studies on learning to rank.)

4.2. Topk Probability

The topk probability of objects (j1, j2, ..., jk) represents the
probability of their being ranked on the topk positions,

given the scores of all the objects. Before giving the defini-
tion of topk probability, we first define the topk subgroup
of permutations.

Definition 6 The top k subgroupGk( j1, j2, ..., jk) contains
all the permutations in which the top k objects are exactly
( j1, j2, ..., jk):

Gk( j1, j2, ..., jk) = {π ∈ Ωn|π(t) = jt,∀t = 1,2, ..., k},

andGk is the collection of all top k subgroups:

Gk = {Gk( j1, j2, ..., jk)| jt = 1,2, ...,n,∀t = 1,2, ..., k,

and ju , jv,∀u , v}
(2)

Note that there are in totaln!
(n−k)! elements in the collection

Gk; the number is much smaller than the number of ele-
ments inΩn.

Definition 7 The top k probability of objects( j1, j2, ..., jk)
is the probability of subgroupGk( j1, j2, ..., jk):

Ps(Gk( j1, j2, ..., jk)) =
∑

π∈Gk( j1, j2,..., jk)

Ps(π),

where Ps(π) is permutation probability ofπ given s.

That is, the topk probability of objects (j1, j2, ..., jk) equals
the sum of the permutation probabilities of permutations in
which objects (j1, j2, ..., jk) are ranked on the topk posi-
tions.

One may argue that from Definition 7, in order to calculate
the n!

(n−k)! top k probabilities, we still need to calculaten!
permutation probabilities. Theorem 8 shows that we can
do the calculation in a different way, which is efficient.

Theorem 8 For top k probability Ps(Gk( j1, j2, ..., jk)), we
have

Ps(Gk( j1, j2, ..., jk)) =
k
∏

t=1

φ(sjt )
∑n

l=t φ(sj l )
,

where sjt is the score of object jt which is ranked in position
t , t = 1,2, ...,n.

Lemma 9 Top k probabilities form a probability distribu-
tion over collectionGk.

Theorem 10 Given any two objects ju and jv, if sju > sjv,
u , v, u, v = 1,2, ...,n, then Ps(Gk( j1, ..., ju, ..., jv, ..., jk)) >
Ps(Gk( j1, ..., jv, ..., ju, ..., jk)).

Due to space limitation, we omit the proofs of Theorem
8, Lemma 9, and Theorem 10. They can be found in our
technical report (Cao et al., 2007).

Theorem 10 shows the desirable properties of topk prob-
ability. We can also prove that topk probability is scale
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invariant or translation invariant with a carefully designed
functionφ(.). We omit the details here.

Given two lists of scores, we can define the metric between
the corresponding topk probability distributions as the list-
wise loss function. For example, when we use Cross En-
tropy as metric, the listwise loss function in Eq. (1) be-
comes

L(y(i), z(i)) = −
∑

∀g∈Gk

Py(i) (g) log(Pz(i) (g)) (3)

5. Learning Method: ListNet

We propose a new learning method for optimizing the list-
wise loss function based on topk probability, with Neural
Network as model and Gradient Descent as optimization
algorithm. We refer to the method as ListNet.

Again, let us take document retrieval as example. We de-
note the ranking function based on the Neural Network
modelω as fω. Given a feature vectorx(i)

j , fω(x(i)
j ) assigns

a score to it. We defineφ in Definition 1 as an exponential
function, which is translation invariant as shown in Theo-
rem 5. We then rewrite the topk probability in Theorem 8
as

Ps(Gk( j1, j2, ..., jk)) =
k
∏

t=1

exp(sjt )
∑n(i)

l=t exp(sj l )
,

Given queryq(i), the ranking functionfω can generate a
score listz(i)( fω) =

(

fω(x(i)
1 ), fω(x(i)

2 ), · · · , fω(x(i)
n(i) )
)

. Then

the topk probability of documents (d(i)
j1
,d(i)

j2
, ...,d(i)

jk
) is cal-

culated as

Pz(i)( fω)(Gk( j1, j2, ..., jk)) =
k
∏

t=1

exp(fω(x(i)
jt

))
∑n(i)

l=t exp(fω(x(i)
j l

))
,

With Cross Entropy as metric, the loss for queryq(i) be-
comes

L(y(i), z(i)( fω)) = −
∑

∀g∈Gk

Py(i) (g) log(Pz(i)( fω)(g)) (4)

The gradient ofL(y(i), z(i)( fω)) with respect to parameterω
can be calculated as follows

△ω =
∂L(y(i), z(i)( fω))

∂ω
= −

∑

∀g∈Gk

∂Pz(i)( fω)(g)

∂ω

Py(i) (g)

Pz(i)( fω)(g)

(5)

Eq.(5) is then used in Gradient Descent. Algorithm 1 shows
the learning algorithm of ListNet.

Notice that ListNet is similar to RankNet. The only major
difference lies in that the former uses document lists as in-
stances while the latter uses document pairs as instances;

Algorithm 1 Learning Algorithm of ListNet

Input: training data{(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}
Parameter: number of iterationsT and learning rateη
Initialize parameterω
for t = 1 to T do

for i = 1 to m do
Input x(i) of queryq(i) to Neural Network and com-
pute score listz(i)( fω) with currentω
Compute gradient△ω using Eq. (5)
Updateω = ω − η × △ω

end for
end for
Output Neural Network modelω

the former utilizes a listwise loss function while the latter
utilizes a pairwise loss function. Interestingly, when there
are only two documents for each query, i.e.,n(i) = 2, then
the listwise loss function in ListNet becomes equivalent to
the pairwise loss function in RankNet.

In our experiments in this paper, we implemented ListNet
with k = 1. With some derivation (Cao et al., 2007), we
can see that fork = 1 we have

△ω =
∂L(y(i), z(i)( fω))

∂ω
= −

n(i)
∑

j=1

Py(i) (x(i)
j )
∂ fω(x(i)

j )

∂ω

+
1

∑n(i)

j=1 exp(fω(x(i)
j ))

n(i)
∑

j=1

exp(fω(x(i)
j ))
∂ fω(x(i)

j )

∂ω

(6)

For simplicity, we use a linear Neural Network model and
omit the constantb in the model1:

fω(x(i)
j ) = 〈ω, x(i)

j 〉

where〈·, ·〉 denotes an inner product.

6. Experimental Results

We compared the ranking accuracies of ListNet with those
of three baseline methods: RankNet, Ranking SVM, and
RankBoost using three data sets.

6.1. Data Collections

We used three data sets in the experiments: TREC, a data
set obtained from web track of TREC 2003 (Craswell et al.,
2003); OHSUMED, a benchmark data set for document re-
trieval (Hersh et al., 1994); and CSearch, a data set from a
commercial search engine.

TREC consists of web pages crawled from the .gov do-
main in early 2002. There are in total 1,053,110 pages

1Note that Eq. (5) and Algorithm 1 can be applied to any
continuous ranking function.
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and 11,164,829 hyperlinks in the data set. It also contains
50 queries from the topic distillation task in Web Track of
TREC 2003. The relevance judgments (relevant or irrele-
vant) on the web pages with respect to the queries are given.
There are about 20 features extracted from each query doc-
ument pair, including content features and hyperlink fea-
tures.

OHSUMED (Hersh et al., 1994) is a collection of docu-
ments and queries on medicine, consisting of 348,566 doc-
uments and 106 queries. There are in total 16,140 query-
document pairs upon which relevance judgments are made.
The relevance judgments are either definitely relevant, pos-
sibly relevant, or not relevant. The standard features in
document retrieval (Nallapati, 2004) are extracted for each
query-document pair. There are 30 features in total.

CSearch is a data set from a commercial web search en-
gine. It contains about 25,000 queries, and each query has
one thousand associated documents. There are about 600
features in total for each query-document pair, including
query dependent features and independent features. This
data set provides five levels of relevance judgments, rang-
ing from 4 (”perfect match”) to 0 (”bad match”).

To obtain the ground truth (i.e., the ranking list of true
scores) for each query, we simply use the ’ranks’ (relevance
judgments) of the related documents, provided in the data
sets2.

In ranking performance evaluation, we adopted two com-
mon IR evaluation measures: Normalized Discounted Cu-
mulative Gain (NDCG) (Jarvelin & Kekanainen, 2000) and
Mean Average Precision (MAP)(Baeza-Yates & Ribeiro-
Neto, 1999). NDCG is designed to measure ranking ac-
curacy when there are more than two levels of relevance
judgments. For MAP it is assumed that there are two lev-
els: relevant and irrelevant. In calculation of MAP for
OHSUMED, we treated ‘definitive relevant’ as relevant and
the other two levels as irrelevant. For CSearch, we only
used NDCG.

6.2. Ranking Accuracy

For TREC and OHSUMED we divided each data set into
five subsets, and conducted 5-fold cross-validation. In each
trial, three folds were used for training, one fold for valida-
tion, and one fold for testing. For RankNet and ListNet the
validation set in each trial was used to determine the num-
ber of iterations. For Ranking SVM it was used to tune the
coefficientC and for RankBoost it was used for selection

2We note that this is only one way for creating training data in
the listwise approach. If pairwise data is available (such as clicks-
through Joachims (2002)), then we can use them to create training
data as well, for example, by employing the algorithm proposed
in Cohen et al. (1998)).

Table 1.Ranking accuracies in terms of MAP

A LN RB RSVM RN
TREC 0.216 0.174 0.193 0.197
OHSUMED 0.305 0.297 0.297 0.303

of the number of weak learners. The accuracies we report
in this section are those averaged over five trials.

Figure 1 and Table 1 give the results for TREC. We can
see that ListNet outperforms the three baseline methods of
RankNet, Ranking SVM, and RankBoost in terms of all
measures. Especially for NDCG@1 and NDCG@2, List-
Net achieves more than 4 point gain, which is about 10%
relative improvement.

Figure 2 and Table 1 show the results for OHSUMED.
Again, ListNet outperforms RankNet and RankBoost in
terms of all measures. Moreover, ListNet works better
than Ranking SVM in terms of NDCG@1, NDCG@2,
NDCG@4 and MAP, with exceptions of NDCG@3 and
NDCG@5.

CSearch is a large data set, and thus we did not conduct
cross-validation. Instead, we randomly selected one third
of the data for training, one third for validation, and the re-
maining one third for testing. Figure 3 shows the results of
ListNet, RankNet and RankBoost. Again, ListNet outper-
forms RankNet and RankBoost in terms of all measures.
Since the size of training data is large, we were not able
to run Ranking SVM with the SVMlight tool (Joachims,
1999).

6.3. Discussions

We investigated why the listwise method ListNet can out-
perform the pairwise methods of RankNet, Ranking SVM,
and RankBoost.

As explained in Section 1, for the pairwise approach the
number of document pairs varies largely from query to
query. As a result, the trained model may be biased toward
those queries with more document pairs. We observed the
tendencies in all data sets. As example, Table 2 shows the
distribution of the number of document pairs per query in
OHSUMED. We can see that the distribution is skewed:
most queries only have a small number of document pairs
(e.g. less than 5, 000), while a few queries have a large
number of document pairs (e.g. more than 15,000). In the
listwise approach the loss function is defined on each query,
the problem does not exist. This appears to be one of the
reasons for the higher performance by ListNet.

The pairwise approach actually employs a ‘pairwise’ loss
function, which might be too loose as an approximation of
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Figure 1.Ranking accuracies in terms of NDCG@n on TREC

Figure 2.Ranking accuracies in terms of NDCG@n on
OHSUMED

the performance measures of NDCG and MAP. By con-
trast, the listwise loss function used in the listwise ap-
proach can more properly represent the performance mea-
sures. This appears to be another reason that ListNet out-
performs RankNet, etc. To verify the correctness of the
claim, we further examined the optimization processes of
the two methods. We looked at the correlations between
the loss functions used by ListNet and RankNet and the
measure of NDCG during the learning phase. Note that the
major difference between the two methods is the loss func-
tion. The results using the TREC data are shown in Figures
4 and 5. From the figures, we can see that the pairwise loss
of RankNet does not inversely correlate with NDCG. From
iteration 20 to iteration 50, NDCG@5 increases while the
pairwise loss of RankNet decreases. However, after iter-
ation 60, NDCG@5 starts to drop, although pairwise loss
is still decreasing. In contrast, the listwise loss of ListNet
completely inversely correlates with NDCG. More specif-
ically, from iteration 20 to iteration 50, listwise loss de-
creases, NDCG@5 increases accordingly. After iteration
50, listwise loss reaches its limit, while NDCG@5 also
converges. Another point is that pairwise loss converges
more slowly than listwise loss, which means RankNet
needs run more iterations in training than ListNet. Simi-
lar trends were observed on the results evaluated in terms
of MAP.

Figure 3.Ranking accuracies in terms of NDCG@n on CSearch

Table 2.Document-pair number distribution

P N Q N
<5000 61
<10000 29
<15000 8
<20000 6
>=20000 2

We conclude that the listwise approach is more effective
than the pairwise approach for learning to rank.
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Figure 4.Pairwise loss v.s. NDCG@5 in RankNet

7. Conclusions

In this paper, we have proposed a new approach to learning
to rank, referred to as the listwise approach. We argue that
it is better to take this approach than the traditional pair-
wise approach in learning to rank. In the listwise approach,
instead of using object pairs as instances, we use list of ob-
jects as instances in learning.

The key issue for the listwise approach is to define a
listwise loss function. In this paper, we have proposed
employing a probabilistic method to solve the problem.
Specifically, we make use of probability models: permuta-
tion probability and topk probability to transform ranking
scores into probability distributions. We can then utilize
any metric between probability distributions (e.g., Cross
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Figure 5.Listwise loss v.s. NDCG@5 in ListNet

Entropy) as the listwise loss function.

We have then developed a learning method based on the ap-
proach, using Neural Network and Gradient Descent. Ex-
perimental results with three data sets show that the method
works better than the existing pairwise methods of RanNet,
Ranking SVM, and RankBoost, suggesting that it is better
to take the listwise approach in learning to rank.

As future work, we plan to study the effects of using other
metrics and models in the listwise approach. We also in-
tend to investigate the relationship between listwise loss
functions and performance measures such as NDCG and
MAP used in information retrieval.
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